RELIABILITY / RISK / RESILIENCE

11-en-resilienceIn energy systems, reliability and risk are the cornerstones of safety and efficiency. By incorporating reliability and risk information into decision-making, enterprise can manage uncertainties and significantly improve the prediction and prevention of undesirable consequences, thereby enhancing the safety, resiliency, profitability, and sustainability of large, complex energy infrastructures. Both equipment reliability and human reliability shape risk scenarios at all stages (i.e., design, development, testing, construction, production, operation, maintenance, storage, distribution, consumption, and decommissioning) of the energy life cycle. Utilizing risk communication in policymaking can improve risk perception of stakeholders and regulators with respect to building and maintaining critical energy infrastructure. Achieving high reliability and meeting international safety standards increase longevity across all energy sectors and provide energy security for future generations.

 

Areas of Research Focus

Illinois brings together pioneers in reliability and risk education and research. The University is at the forefront of model-based and data-driven reliability and risk research, where scientific, innovative, and practical solutions are being developed to meet industry and governmental challenges, by conducting scientific root-cause analyses and by simulating the dynamic interactions of physical, digital, and social failure mechanisms associated with the emerging risk scenarios of energy systems. At Illinois, the transdisciplinary nature of Reliability and Risk is realized in diverse application domains (e.g., electrical energy, nuclear power, energy distribution grids, solar energy, fuel cell, wind energy, oil and gas, and other alternative energy sources) and across multiple departments, providing world-class expertise in research areas such as:

  • Risk-informed decision-making and regulation.
  • Probabilistic risk assessment.
  • Systems reliability.
  • Software, digital instrumentation and control reliability.
  • Structural reliability.
  • Multihazard modeling.
  • Fire risk modeling.
  • Socio-technical risk analysis.
  • Human reliability and organizational risk analysis.
  • Probabilistic physics of failure and degradation modeling.
  • Risk-informed emergency response.
  • Big data analytics.
  • Uncertainty quantification.
  • Consequence analysis.
  • Financial and economic risk management.
  • Decision-making under uncertainties.
  • Grid reliability in drought and heat weave conditions.
  • X-ray tomography of Si- and Sn- based high capacity battery electrodes.
  • Digital volume correlation for internal strain measurements in battery electrodes.
  • Electrochemical stiffness in Li ion battery electrodes.
  • Stress and strain development in Li ion battery electrodes.

Researchers

Ximing Cai

Ximing Cai

Hydraulic engineering

A. Bryan Endres

A. Bryan Endres

Biomass and biofuels

Kiruba Haran

Kiruba Haran

Power and energy systems

Ravishankar K. Iyer

Ravishankar K. Iyer

Reliable and secure electrical systems

Harrison Kim

Harrison Kim

Energy systems engineering

Hadi Meidani

Hadi Meidani

Resilient infrastructure and sustainable transportation

Nenad Miljkovic

Nenad Miljkovic

Fluid mechanics and thermal sciences

Zahra Mohaghegh

Zahra Mohaghegh

Socio-technical risk analysis

Ralph Nuzzo

Ralph Nuzzo

Photovoltaics and catalysis

Kevin O'Brien

Kevin O'Brien

Traditional and alternative energies

Martin Ostoja-Starzewski

Martin Ostoja-Starzewski

Thermomechanics

Yanfeng Ouyang

Yanfeng Ouyang

Transportation and infrastructure

William H. Sanders

William H. Sanders

Secure energy systems

Nancy R. Sottos

Nancy R. Sottos

Materials for extreme conditions

Ashlynn Stillwell

Ashlynn Stillwell

Hydraulic engineering

FIND AN ENERGY SCHOLAR

 

X