INSTITUTE FOR SUSTAINABILITY, ENERGY, AND ENVIRONMENT
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

WELCOME

Welcome to Water at Illinois, the access point for water-related research conducted across campus at the University of Illinois at Urbana-Champaign. The campus maintains a longstanding program in water research, education, engagement, and development that has efforts focused not only in Illinois, but worldwide. Illinois is home to a rich, interactive community of world-renowned scholars,

_

who are willing to work across disciplines to solve the issues the world faces with its water supply. In Fiscal Year 2015, researchers were involved in about $45 million in funded water research projects on the Illinois campus. Based on global interactions, the Illinois Water Scholars’ research, education, and engagement programs are integrated across four main categories of water-related “needs”:

Water Research in the News

ILLINOIS WATER SCHOLARS AT WORK

Academic, Government Partners Work Toward the Next Level in Home Water Filtration

Illustration of free-standing gold membrane with nanoparticles 6 nanometers in diameter and openings of 2 micrometers.

Illustration of free-standing gold membrane with nanoparticles 6 nanometers in diameter and openings of 2 micrometers.

The Prairie Research Institute’s Illinois Sustainable Technology Center researchers Nandakishore Rajagopalan and Wei Zheng are part of a team of experts from government and academia who are working to improve the filtration of household drinking water using new ultrathin nanoparticle-based membranes to remove trace organic contaminants (TrOCs).

The U.S. Department of Energy will fund the work through its Technology Commercialization Fund, which moves promising energy technologies developed by 12 national laboratories and their research partners to the marketplace. The  Illinois Sustainable Technology Center (ISTC) will assist in the testing the performance of prototype TrOCs filtration membrane devices which may be commercially viable for the home water filtration market. The primary investigator on the project is Xiao-Min Lin, a scientist at Argonne’s Center for Nanoscale Materials and at the James Franck Institute, University of Chicago.

Argonne National Laboratory and the University of Chicago developed the technology for the new membrane structure using gold nanoparticles which are strong and porous, and which can be “dialed” to selectively trap different contaminants by engineering the ligand on the particle surface. A ligand is a molecule that binds to a central metal atom to form a complex that helps to protect the nanoparticle and introduce additional functionalities. Laboratory measurements have demonstrated the nanoparticle based membrane can selectively filter out molecules as small as 2 nanometers, yet has water permeability far higher than conventional polymer-based membranes.

For two years, scientists at Argonne, ISTC and the Metropolitan Water Reclamation District (MWRD) of Greater Chicago have been conferring on the problem of removing TrOCs from potable water supplies. Such contaminants consist of hormones, pesticides, prescription medications, personal care products, synthetic industrial chemicals, and chemicals formed during wastewater and drinking-water treatment processes. Even at very low concentrations these molecules can negatively affect aquatic environments and are of concern for human health impacts.

“Modern wastewater treatment plants were not designed to remove such materials, especially at such low concentrations,” said Zheng, a senior research scientist at ISTC.

The search has been ongoing for methods to remove TrOCs including biodegradation, photolysis, volatization, and sorption. “We hope a gold nanoparticle-based membrane approach will improve the sorption efficiency of TrOC removal at low pressure and low energy — at a cost that makes it widely available for home filtration,” he said.

“Deploying new clean energy technologies is an essential part of our nation’s effort to lead in the 21st century economy and in the fight against climate change,” said Lynn Orr, DOE’s Undersecretary for Science and Energy, in announcing the grant. DOE’s Technology Commercialization Fund “will help to accelerate the commercialization of cutting-edge energy technologies developed in our national labs, making them more widely available to American consumers and businesses.”

— Article by ISTC

WATER ENGINEERING EFFORTS

iSEE-related Researchers Featured Prominently on Engineering Website

Benito Mariñas, Professor and Head of Civil and Environmental Engineering at Illinois — and Primary Investigator in the iSEE seed-funded Smart Water Disinfection Project — is one of several iSEE-affiliated researchers prominent on a new Engineering website about water.

Mariñas’ Safe Global Water Institute is one of several Illinois initiatives addressing a grand global challenge of nearly 750 million people drinking water from sources that are likely contaminated. This new website brings together the efforts largely based in the College of Engineering that take on water and its relation with food security, energy, health, and contamination.

CHECK OUT THE WEBSITE >>>

Water Risk Study a Call for CEOs to Act

An article from Chief Executive:

According to a new report, problems associated with drought, flooding, supply scarcities and pollution are expected to cost some of the world’s biggest companies a combined $14 billion this year. Many businesses, however, aren’t doing enough to protect themselves, even as climate change threatens to disrupt water security and a rising global population drives up demand and pollution risks.

The report was compiled on behalf of hundreds of large investors by not-for-profit group CDP, which asked 1,252 companies listed on the MSCI All Country World Index to provide data about their efforts to manage and govern freshwater resources. In total, 607 companies, or 48%, responded, up from 38% last year.

“Water risk can rip the rug from right under business, posing a serious threat to the bottom line,” CDP’s CEO Paul Simpson said.

“Every drop of clean, sustainable water will be essential. This is a wake-up call to companies everywhere to take water more seriously.”

This year’s $14 billion cost figure jumped dramatically from 2015’s $2.6 billion. Much of the increase, however, could be attributed to the continuing travails of Tokyo Electric Power Co., which said it incurred around $10 billion of water-related costs cleaning up groundwater at the Fukushima Daiichi nuclear power plant, damaged by 2011’s tsunami.

Still, all corporate sectors—apart from consumer discretionary—saw increased financial impacts this year, with the utilities, mining and energy sectors hardest hit.

South African miner Gold Fields, for example, reported a $92 million cost associated with operating a diesel-fired power plant, which was needed due to the declining availability of Ghana’s hydro-power plants. And Canadian oil sands giant Suncor Energy said treating discharge from its refineries to meet new standards could push related R&D costs above US$165 million.

Companies outside these more heavily-exposed sectors suffered, too. GM, for example, disclosed it took an $8 million hit after drought in Brazil pushed up its water and energy costs. The U.S. auto giant responded with increased water conservation efforts and energy efficiency measures, CDP said.

Many companies, however, weren’t found to be taking such a proactive approach to managing their water use. Almost two-thirds (61%) said they monitored and measured their water use, up three percentage points from the previous year, while 83% said they had integrated water use into their business strategy. Only 15%, however, had a publicly-available, company-wide water policy in place, up from 6% last year.

Simpson said the report’s findings were particularly concerning because studies have shown around a quarter of carbon emissions reduction activities reported by companies depend on a stable water supply. “Every drop of clean, sustainable water will be essential,” Simpson said. “This is a wake-up call to companies everywhere to take water more seriously.”

Read the full article here >>>

Areas of Excellence in Water Research

ADAPTING

_____

Our research helps communities balance water supply and demand, and achieve human and environmental resiliency in a changing climate with extreme events such as droughts and floods.

 

READ MORE

WATER-FOOD-ENERGY

_____

Our research is used to educate policy makers, assist technology developers, and empower agencies and industries to achieve a balance at the nexus of the world’s water, food, and energy needs.

 

READ MORE

PUBLIC HEALTH

_____

Our research develops new technologies to detect and treat pathogens and contaminants in drinking water coming from and transporting to ground and surface supplies.

 

READ MORE

RESILIENCE

_____

Our research is used to affect policy and decision-making that balances water and land use with sustainability of aquifers, surface waters, watersheds and associated ecosystems.

 

READ MORE