Impact of extreme weather events on the risk from West Nile virus in Illinois

Surendra Karki
PhD Student, Department of Pathobiology
Mosquitoes as disease vectors

• *Culex spp.*:
 – West Nile virus, St. Louis encephalitis virus, Filariasis

• *Aedes spp.*:
 – Dengue, Yellow fever, Chikungunya, Zika virus

• *Anopheles spp.*:
 – Malaria
Mosquito lifecycle

• Four stages: Eggs, Larvae, Pupae and adult

• First 3 stages aquatic, adult terrestrial

• Temperature and rainfall affects mosquito lifecycle

http://www.mosquito.org/
Weather
- temperature
- rainfall
- extreme events

Landscape features
- Urban water structures
- Vegetation
- Built structures

Mosquitoes (*Culex* spp.)
- abundance
- infection rate with WNV
- Develop a model based on weather patterns

Canines (as sentinels)
- seroprevalence of WNV

Birds

Climate change
- long term temperature and rainfall events

Improve the understanding of the risk estimation of WNV in humans

Reported human illnesses
Specific research objectives relative to climate change

1. What was the magnitude and timing of weekly or daily rainfall events in northeastern Illinois over the past 10 years during peak mosquito season?

2. How and when do large rainfall events affect the adult mosquito population?

3. How do average weekly temperature and rainfall affect mosquito abundance based on historic data?
Approach

• **Mosquito data:** Abundance data collected over 2009 to 2012.

• **Weather data:** Obtained from nearby weather station (Midway airport).

• **Analyses**
 – Descriptive analysis of the NOAA weather patterns (from Chicago Midway).
 – Multivariable statistical analysis using mosquito abundance per trap night as the outcome variable and with weather variables as the predictor variables.
 – Akaike information criteria was used to select the best fit model.
Study area: Oak Lawn / Alsip, Illinois

- Light traps
- Gravid traps
Temporal (weeks combined) distribution of *Culex* mosquito abundance 2009-2012
Temporal (annual weekly) distribution of *Culex* mosquito abundance 2009-2012
Effect of average weekly weather variables on Weekly *Culex* abundance estimates

Culex abundance in light traps were associated with:
- Average weekly temperature of the same week (+)
- Precipitation one, two and four weeks earlier (+)
- Maximum average wind speed of the same week (-)

Culex abundance in gravid traps were associated with:
- Average weekly temperature of the same week (+)
- Average weekly temperature of four weeks before (-)
- Precipitation two and four weeks earlier (+)
Historical NOAA weather data analysis for Chicago Midway
Seasonal average temperature anomaly relative to 1961-90
Seasonal precipitation anomaly relative to 1961-90

[Bar chart showing precipitation anomalies for different seasons (Fall, Spring, Summer, Winter) from 1971-2000 and 1981-2010.]
Annual average temperature anomaly relative to their 30-yr Normal
Annual total precipitation anomaly relative to their 30-yr Normal
Extreme rainfall events

- **Extreme rainfall (High):** >3.5 cm in a single day (>99th percentile)
- **Low rainfall:** <1 cm in a single day
- **No Rain**
- **Other:** other than above three conditions

For Week: If any day within that week experienced an extreme event, that week is defined as extreme week. For all, all day within that week should have <1 cm rain.

Extreme rainfall events (daily) in Midway

<table>
<thead>
<tr>
<th>Decades</th>
<th>No. of extreme rainfall events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-60</td>
<td>33</td>
</tr>
<tr>
<td>1961-70</td>
<td>37</td>
</tr>
<tr>
<td>1971-80</td>
<td>36</td>
</tr>
<tr>
<td>1981-90</td>
<td>53</td>
</tr>
<tr>
<td>1991-00</td>
<td>36</td>
</tr>
<tr>
<td>2001-10</td>
<td>39</td>
</tr>
</tbody>
</table>
Extreme rainfall events and *Culex* abundance

<table>
<thead>
<tr>
<th>Event</th>
<th>N</th>
<th>Mean</th>
<th>Std. de</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>6</td>
<td>14.9</td>
<td>6.5</td>
<td>8</td>
<td>25.5</td>
</tr>
<tr>
<td>Low</td>
<td>32</td>
<td>16.8</td>
<td>33.6</td>
<td>0.7</td>
<td>192.6</td>
</tr>
<tr>
<td>No Rain</td>
<td>5</td>
<td>15.6</td>
<td>10.9</td>
<td>4.7</td>
<td>29.7</td>
</tr>
<tr>
<td>Other</td>
<td>28</td>
<td>15.5</td>
<td>15.6</td>
<td>0.1</td>
<td>63.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>N</th>
<th>Mean</th>
<th>Std. de</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>6</td>
<td>4.8</td>
<td>2.3</td>
<td>1.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Low</td>
<td>32</td>
<td>6.8</td>
<td>2.5</td>
<td>3.7</td>
<td>9.9</td>
</tr>
<tr>
<td>No Rain</td>
<td>5</td>
<td>4.4</td>
<td>3.3</td>
<td>0.8</td>
<td>13.1</td>
</tr>
<tr>
<td>Other</td>
<td>28</td>
<td>5.7</td>
<td>4.9</td>
<td>0.4</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Gravid traps

Light traps
Extreme rainfall events and *Culex* abundance following weeks
Conclusions

- Temperature and precipitation of the capture week and one to four weeks earlier played important roles in the temporal variation of *Culex* abundance in both light and gravid traps.

- Slightly lower number of *Culex* were captured on the week of extreme event.

- Temperature is going up; while precipitation is variable (summer precipitation going up) in Chicago area, which will influence the mosquito dynamics.
Acknowledgements

• National Science Foundation and National Institutes of Health Ecology of Infectious Disease program (Award No. 0840403).

• Lavey/Rosencranz Research Awards in Climate Change and Public Health

• The Village of Oak Lawn for a field laboratory and the many municipalities, cemeteries, and private homeowners in Cook County for granting permission to conduct this study. Tim Thompson, Diane Gohde, Patrick Kelly, Carl Hutter, Marija Gorinshteyn, Zach Allison, and Mike Glester provided field assistance.
THANK YOU