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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  The storage vision 

q  ESR roles and applications to power systems 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead  
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ESRs  ARE  IN  THE  NEWS 

New York Times (April 20, 2015) 

Utility Dive (December 22, 2015) 

Utility Dive (November 24, 2015) 

Forbes (September 9, 2015) 

Financial Times (November 17, 2015) 
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THE  DIRE  NEED  FOR  STORAGE 

q  The electricity business is the only industry sector 

that sells a commodity without sizeable inventory 

q  The lack of utility–scale storage in today’s power 

system drives electricity to be a highly perishable 

commodity – the prototypical just–in–time product 

q  The deepening renewable resource penetrations 

exacerbate the challenges to maintain the demand–

supply equilibrium at all points in time  

q  Storage provides flexibility to assure that demand–

supply balance is maintained around the clock 
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CHANGING  REALITY  IN  POWER  
SYSTEMS 

q  Climate change impacts are key drivers of the 

growing deployment of renewable resources to 

reduce CO 2 emissions 

q  In various jurisdictions, legislative/regulatory 

initiatives stipulate specific targets with the dates 

by which they must be met to result in a cleaner 

environment 
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RENEWABLE  PORTFOLIO  STANDARDS 

Source: www.dsireusa.org – October 2015 
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MISALIGNMENT  OF  WIND  POWER  
OUTPUT  AND  LOAD 

0 

50 

100 

150 

200 

250 

w
in

d 
po

w
er

 o
ut

pu
t (

M
W

) 

  

24 48 72 96 120 144 168 3000 

4000 

5000 

6000 

7000 

8000 

lo
ad

 (
M

W
) 

hour 

wind power 

load 



                         8	

NEED  FOR  LARGER  AND  FASTER 
RAMPING  RESERVES  
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  CURTAILMENT  PERCENTAGES  OF  
WIND  GENERATION :  2007 – 2013  
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CAISO  NEGATIVE  RTM  PRICES 
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INTEGRATION  OF  STORAGE  WITH 
SOLAR  RESOURCES 
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CHALLENGES  THAT  STORAGE  CAN  
HELP  EFFECTIVELY  ADDRESS 

time–dependent  resource  
integration  challenge  

the way storage addresses the 
challenge 

the pressing needs for adequate 
ramping capability in 
controllable resources 

fast ms–order ESR response times 
can meet the steep  

raise/lower ramping requirements  

variability, intermittency and 
uncertainty associated with 
renewable resource outputs 

ESRs are instrumental in  
smoothing renewable outputs and in 
higher renewable energy harnessing  

increased need for regulation 
resources for flexibility in grid 

operations 

ESRs provide regulation with   
2 – 3  times faster response times 

than gas turbines 
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STORAGE  TO  THE  RESCUE 

today’s electricity grid with 
limited  

storage capacity/capability 

future electricity grid with 
measurably increased  

storage capacity/capability 

last MWs of incremental peak 
demand require use of polluting 

and inefficient power plants 

peak demand is met by ESRs that 
shift the times of  

energy consumption 

reserves requirements are met 
by expensive and polluting  

fossil–fired generators 

reserves provided by ESRs reduce 
dependence on the contributions 
to reserves by conventional units 

renewable generation has to be 
“spilled” whenever the supply 
exceeds the demand or under 

congestion situations 

clean, renewable energy is stored 
in ESRs during low–demand 
periods, leading to reduced 

dependence on conventional units 
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THE  STORAGE  RESOURCE  PHASES 
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STORAGE  UTILIZATION 

Source: NE ISO time of day 
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KEY  ROLES  ESRs  CAN  PLAY 

q  ESRs enable deferral of investments in: 

m  new generation resources 

m  new transmission lines 

m  distribution circuit upgrades 

q  ESRs are key to the development of microgrids in 

both grid–connected and autonomous situations 
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ADDITIONAL  ROLES  ESRs  CAN  PLAY 

q  In short–term operations, ESRs provide: 
m  flexibility in time of energy usage: demand 

shift; peak–load shaving 
m  ability to delay the start up of cycling units 
m  capability to provide voltage support 
m  demand response action  
m  reserves and frequency regulation services 
m  levelization of substation load  

q  Storage can provide virtual inertia service to replace 
part of the missing inertia in grids with integrated 
renewable resources 
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DEMAND  RESPONSE  RESOURCES 
(DRRs)  IN  SYMBIOSIS  WITH  ESRs 

q  DRRs are demand–side entities which actively 

participate in the markets as both buyers of 

electricity and sellers of load curtailment services 

q  DRRs effectively reduce the load during peak 

hours and/or shift the demand, in part or in 

whole,  from peak hours to low–load hours 

q  The coordinated deployment of ESRs and DRRs 

can further reduce both the operational costs and 

emissions, due to reductions in unit cycling and 

the deferrals in the start–up of cycling units 
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M
W
	

hours per year	

peak 5 % of demand – about 
2,500 MW – occurs in less than 

50 hours per year	

peak 25 % of demand occurs 	
less than 10 % of the time	

CAISO  DRR  AND  ESR  DEPLOYMENT 

energy storage	

demand response	

CAISO annual LDC	
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KEY  BENEFITS  OF   
GRID – INTEGRATED  ESRs 

q  ESR deployment: 

m  raises system reliability 

m  improves operational economics 

m  provides operators with additional flexibility 

to optimize grid operations and manage grid 

congestion 

m  raises renewable output utilization 
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KEY  BENEFITS  OF   
GRID – INTEGRATED  ESRs 

q  ESR deployment reduces GHG emissions  because   

m  ESRs facilitate renewable resource integration 

m  ESRs lower the system reserves requirements 

from the conventional fossil–fired resources 

m  ESRs displace the generation of inefficient/

dirty units used to meet peak loads 
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CURRENT  WORLD  STORAGE  STATUS 

q  There are currently 1,555 

energy storage projects 

installed throughout the 

world with a total capacity of 

188,347 MW 

q  272 out of these projects are 

in California with an installed 

capacity of 7,392 MW 

 

California: 4 % 

rest of the world: 96 % 
Source: DOE Global Energy Storage Database, http://www.energystorageexchange.org/projects 

global storage capacity 
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ENERGY  STORAGE  TECHNOLOGIES 

increasing capacity	
increasing capability	

CAES	

lead–acid battery flywheel 

NaS  battery 

SMES Li–ion 
battery 

Ni–Cd 
battery 

pumped storage 

flow  battery 

advanced lead 
acid battery 

EC capacitor 
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STORAGE  TECHNOLOGY ADVANCES 

CAES	
Li–ion 

batteries	

electric 
vehicles	

flywheels	



                         28	

 BATTERY  ENERGY  STORAGE  SYSTEMS  
(BESSs)  

q  Many practitioners consider the development of  

BESSs to most effectively address the challenges 

to integrate deepening penetrations of renewable 

resources – the holy grail of energy storage 

q  BESS can be highly efficient and can discharge the 

stored energy with high ramp rates 

q  The development of new, very large, highly effi–

cient batteries, suitable for utility–scale storage, is 

prone to become a big business 
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BESS  PROJECTS  IN  THE  US 
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BESS  PROJECT  IMPLEMENTATION  
2011 – 2016  
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BARRIERS  TO  LARGE–SCALE  
STORAGE  DEPLOYMENT 

q  The pace of energy storage deployment has been 

very slow in the past, mainly due to the extremely 

high costs of storage 

q  The reductions in storage costs over the past 

decade have remained inadequate to stimulate the 

large–scale deployment of ESRs 

q  The high costs of storage present a chicken and egg 

problem: costs remain high due to low demand 

and the high costs impede any growth in demand 
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NEW  PUSH  IN  ESR  DEPLOYMENT 

q  Advancements in storage technology, cost reduc–

tions and regulatory initiatives have invigorated 

the interest in large–scale grid–connected ESRs 

q  The push to deeper renewable resource penetra–

tions leads to the wider deployment of storage –  

as both a distributed and a grid energy resource  

q  Key technological developments are in areas such 

as flywheels, battery vehicles (BVs) and utility–

scale batteries 
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THE  VEHICLE–TO–GRID (V2G) 
FRAMEWORK  AS  AN  ESR 

q  The use of bidirectional power flow interconnec–

tions of the BVs under the V 2G  framework allows 

aggregations of BVs to constitute a storage project 

whose total capacity and capability can provide a 

valuable services to the grid 
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TESLA  MODEL  3  RESERVATIONS 
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CALIFORNIA 
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CALIFORNIA  PUSH  FOR  STORAGE  
DEPLOYMENT 

q  The CA government has recognized the significant 

role of storage in the grid and the need for a bold 

move on storage to drastically reduce the price of 

storage through a sharp increase in demand  

q  The recent CPUC mandate to deploy 1,325 MWs of 

cost–effective energy storage by 2020 in California 

constitutes a big push for the global storage sector 
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CALIFORNIA  PUSH  FOR  STORAGE  
DEPLOYMENT 

q  The CPUC energy storage requirements arise from 
the 2010 Assembly Bill 2514 (AB 2514)  

q  AB 2514 requires the CPUC to “open a proceeding 
to determine appropriate targets, if any, for each 
load–serving entity to procure viable and cost–
effective energy storage systems and, by October 1, 
2013, to adopt an energy storage system procure–
ment target, if determined to be appropriate, to be 
achieved by each load–serving entity by December 
31, 2015, and a second target to be achieved by 
December 31, 2020” 
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THE  CPUC  STORAGE  REQUIREMENTS  

q  In Decision 13-10-040, CPUC has mandated a target 

by 2020 of 1,325 MW of energy storage to be 

installed by the three major jurisdictional investor 

owned utilities (IOUs) by 2024 

q  The procurement and deployment of the storage 

projects must be carried out in compliance with 

the specified CPUC Decision 13-10-040 framework 
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THE  CPUC  STORAGE  PROCUREMENT  
FRAMEWORK  SPECIFICATIONS 

q  Storage capacity targets for each of the 3 major  

California IOUs 

q  Procurement schedule for the authorized storage 

projects 

q  Storage capacity targets for each of the specified 

grid interconnection point given below: 

m  transmission 

m  distribution  

m  customer side of the meter 
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GUIDING  PRINCIPLES 

1.   The optimization of the grid, including peak 

reduction, contribution to reliability needs, or 

deferment of transmission and distribution 

upgrade investments; 

2.   The integration of renewable energy; and 

3.   The reduction of greenhouse gas emissions to  

80 percent below 1990 levels by 2050, per 

California’s goals” 

 

“ 
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ELIGIBILITY  REQUIRES  EACH 
STORAGE  PROJECT  TO:  

q  Optimize grid operations 

q  Reduce GHG emissions 

q  Facilitate integration of renewable energy 

q  Be installed after January 1, 2010 

q  Be operational before December 31, 2024 

q  Not exceed 50 MW of capacity for pumped storage 
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IOU  STORAGE  CAPACITY  TARGETS 

IOU 
target 
(MW) 

% 

PG&E 580 43.77 

SCE 580 43.77 

SDG&E 165 12.26 



                         43	

CUMULATIVE  PROCURED  CAPACITY 
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STORAGE  CAPACITY  TARGETS  AND  
GRID  INTERCONNECTION  POINTS 

grid intercon–
nection point 

target 
(MW) % 

customer side 
of meter 

200 15.09 

distribution 425 32.08 

transmission 700 52.83 

customer side of meter 

distribution 

transmission 
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CPUC  STORAGE  PROCUREMENT  
FRAMEWORK  FEATURES 

q  The procurement targets are mandated for each 

IOU and may not be traded among the IOUs 

q  Biannual procurement applications are to be filed 

by each IOU by March of each applicable year  

q  At least 50 % of each project approved to meet the 

targets must be owned by third parties, customers 

or joint third party/customer ownership 
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CPUC  STORAGE  PROCUREMENT  
FRAMEWORK  FEATURES 

q  Over–procurement by an IOU, above its biennial 

procurement target, may reduce its next biennial 

target by the exceeded amount  

q  Southern California Edison must invest up to the  

50 % level in at least 50 MW of energy storage to 

meet L.A. Basin local capacity requirements 
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CA  SERVICE  AREAS 

 

 

       Source : California Energy Commission 

L.A. 
Basin 
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ALLOWABLE  DEVIATIONS  FROM 
SPECIFIED  TARGETS 

q  Shift of target: the IOUs may shift up to 80 % of 

the target capacity within the T&D domains, but 

no shift of target into or out of the customer–side 

domain is permitted 

q  Ownership: each utility’s ownership is limited at 

50 % of each project and its total ownership is at 

most 50 %  of its procurement target  

q  Recovery of investment: approved storage asset 

investment may be recovered through rates 
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CPUC  DECISION  ISSUES 

q  The feasibility and cost–effectiveness of each 

energy storage project may be difficult to 

demonstrate without a clearly specified CPUC 

approved methodology 

q  While the capacity procurement targets for energy 

storage capacity are specified in the CPUC 

mandate, the storage capability targets are not  
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CPUC  DECISION  CHALLENGES 

q  The quantification of the extent to which each 

project meets the optimization of grid services 

and the integration of renewables requirements 

represents a challenging problem 

q  Management of required permit authorization by 

each IOU within the CPUC–specified time frame 

for the planned sites 
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CPUC  DECISION  RAMIFICATIONS 

q  CPUC specified constraint to limit pumped hydro–

capacity is a key driver to spur sales of other 

storage technologies and reduce the dependence 

of drought–ridden CA on hydro storage 

q  The CPUC Decision stimulus to reduce the costs of 

ESRs through the increased demand is likely to 

spread to other regions and engender similar 

measures that may lead to further cost reductions 
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CPUC  DECISION  RAMIFICATIONS 

q  The CPUC Decision is a harbinger of regulatory 

initiatives in the large–scale grid–connected 

storage domain and signals the realization by the 

government of the significant role of storage to 

further the realization of the smart grid vision  

q  The CPUC Decision stimulus to reduce ESR costs 

by increased demand is likely to be copied else–

where and promote wider deployment of storage 
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OPPORTUNITIES  FOR  LARGE–SCALE  
ESRs 

q  The CPUC Decision has paved the way for new 

opportunities in the storage sector 

q  The need for storage to meet the CPUC mandate 

creates a strong push in the storage market and 

has considerably weakened the reluctance of 

investment in the storage sector 

q  A key example is the new Gigafactory, a large–

scale plant to build commercial and residential 

storage batteries that Tesla Energy is building 
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WILL  STORAGE  FOLLOW  THE   PATH  
OF  PV  SOLAR  CAPACITY  COSTS ? 
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NEED  FOR  APPROPRIATE  TOOLS 

q To take advantage of the increased flexibility 

imparted by the grid–integrated ESRs, appropriate 

models, tools and policy initiatives are needed 

q These needs pertain to activities that include: 

m planning and investment analysis; 

m development of additional application areas; 

m policy analysis; 

m operations; and 

m market participation and performance 
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NEED  FOR  APPROPRIATE  TOOLS 

q  Energy storage modeling, management and 

solution methodologies are required to: 

m  allow effective ESR participation in markets 

for the provision of commodity and ancillary 

services 

m  evaluate storage for investment decisions 

m  formulate operational paradigms 

m  devise new schemes to manage inventory 

m  overcome scalability/tractability issues in 

mixed integer programming applications 



                         57	

REGULATORY  POLICIES 

q  The current regulations for conventional grid 

assets cannot recognize the unique nature of 

ESRs and as such significantly limit the benefits 

that can be leveraged from these units 

q  The unique nature of storage raises a bevy of 

policy and regulatory issues regarding the 

ownership, control and jurisdiction of ESRs that 

need to be resolved to stimulate the continuing 

future investment in storage projects and to 

ensure the optimal operation of the storage units 
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ENVIRONMENTAL  ASPECTS 

q  Environmentally sensitive means to dispose the 

battery solid waste after degradation–scalable for 

deeper penetration of large scale battery 

deployment 

q  The reduction of GHG emissions, especially in 

those venues in which the storage unit is charged 

by fossil–fuel–fired plants 
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CONCLUDING  REMARKS 

q  In the development of sustainable paths to meet 

future energy needs, renewable resources must 

play a key role and storage is, by far, the most 

promising option to facilitate such paths 

q  The CA mandate provides an appropriate stimulus 

to jump start grid–connected storage deployment 

and to further reduce storage prices 

q  There remain daunting challenges at many levels 

– from science to engineering – to effectively 

implement ESR deployment in the grid 
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CONCLUDING  REMARKS 

q  We need to systematically address the major 

challenges in storage technology improvement, 

modeling and tool development, regulatory, 

environmental and policy formulation arenas – to 

name just a few – in order to realize the goal of 

large–scale deployment of storage in future grids 
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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  The storage vision 

q  ESR roles and applications to power systems 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead  
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TYPICAL  SEASONAL  WEEKLY  LOAD  
PATTERNS :  ERCOT  2005 
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LOAD  AND  LMP 

Source: NE ISO 
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LOAD  AND  LMP 

Source: NE ISO 
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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  The storage vision 

q  ESR roles and application in power system 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead  
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STORAGE  METRICS 

metrics measurand 

state of charge (s.o.c.) 
charge level of a battery, typically, 

expressed in percent 

depth of discharge (d.o.d.) complement of the s.o.c. 

C–rate 
rate at which a battery is discharged 

relative to its maximum capacity 

state of health (s.o.h.) 

a combination of individual measures 
including the number of cycles, the 

internal resistance,  the capability, the 
voltage and the current outputs 
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BATTERY  VEHICLES  (BVs)  

q  Reduction in CO 2 emissions and energy security 

are the key drivers of initiatives aimed to promote 

the electrification of the transportation sector 

q  As a consequence of these efforts, the past 

decade has seen an increase in sales of BVs – 

electric vehicles (EVs), hybrid electric vehicles (HEVs) 

and plug–in hybrid electric vehicles (PHEVs) – that are 

fully or partially powered by batteries 
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RTM demand  

LMP  IN  A  SYSTEM  WITHOUT  
STORAGE 
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Source: http://oasis.caiso.com/, hub TH_SP15 (June 9, 2015) 

ESR  DEPLOYMENT  IMPACT  ON  LMP 
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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  The storage vision 

q  ESR roles and applications to power systems 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead  
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MICROGRID:  DEFINITION   

A microgrid (µ  g) is a network of interconnected 

loads and distributed energy resources, within 

clearly defined geographic boundaries, with the 

properties that it is a single controllable entity, 

from the grid perspective, and that it operates 

either connected to or disconnected from the grid, 

i.e., either in the parallel or in the islanded mode.  
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ESR  APPLICATIONS  IN   
MICROGRIDS (µ gs) 

q  A µ g is a time–varying network in the distribution 

grid with control of its resources to either consume 

or generate electricity or act as an idle entity with 

zero injection/withdrawal  in the isolated mode 

q  Storage plays an integral role in the management 

of generation and load resources in a µ g and thus 

is a critical element in the implementation of grid–

connected, autonomous and community µ gs 
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APPLICATION  IN  MICROGRIDS 

Santa Rita Jail Microgrid 
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DEMAND  RESPONSE  RESOURCES 
(DRRs) 

market clearing transmission scheduling 

resources passive loads 
DRRs 
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ESR  APPLICATIONS 

provision of system 
inertia  

provision of frequency regulation 

provision of voltage support, renewable energy 
smoothing, peak–load shaving 

energy utilization time–shift, 
provision of spinning reserves, 
levelization of substation load 

deferral of investments in generation, 
transmission and distribution upgrades, 

development of microgrids 

time 

minutes seconds 
−  910 −  710 10

operations horizon planning horizon 
hours; days; months 

−  510 −  310 −  110
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NOTREES  PROJECT – GOLDSMITH, TX 
(36 MW / 23.8 MWh) 

Source: http://www.energystorageexchange.org/projects 

The advanced lead–acid battery system project was 
developed to reduce the output variability of the  

153 MW wind power plant 



                         83	

AES LAUREL MOUNTAIN – ELKINS, VA 
(32 MW / 8 MWh) 

Source: http://www.energystorageexchange.org/projects 

The Li–ion batteries are installed in a 98–MW wind 
farm to provide operating reserves and frequency 

regulation in the PJM system 
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SCE  PILOT  PROJECT  –  ORANGE,  CA  
(2.4 MW / 3.9 MWh) 

Source: http://www.energystorageexchange.org/projects 

The set of Li–ion batteries relieves transformer 
overloads and defers distribution network upgrades 
to ensure summer–time demand peak loads are met 
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 BUZEN  SUBSTATION  –  BUZEN, FUKUOKA  
PREFECTURE  (50 MW / 300 MWh) 

Source: http://www.energystorageexchange.org/projects 

The world’s largest BESS serves to provide  
demand – supply balance 
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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  Overview of ESR technologies 

q  ESR roles and application in power system 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead 
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THE  CPUC  STORAGE  PROCUREMENT  
FRAMEWORK  SPECIFICATIONS 

q  Allowed deviations to meet the CPUC targets by: 

m  shifting targets between grid 

interconnection points 

m  ownership of storage resources by IOUs, 

customers and third parties 

m  deferral of IOU targets in the CPUC–

specified schedule 
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CALIFORNIA  IOUs’  HISTORICAL  AND  
FORECASTED PEAK LOADS 
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PROCUREMENT SCHEDULE 
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HISTORICAL  AND  PLANNED  CAISO 
BATTERY  CAPACITY 
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FROM  60 Wh  BATTERY  CELLS  TO  A  
LARGE–SCALE  32 MWh  ESR (BESS) 

56 × 18 × 151 × 4 × 

cell 
(60 Wh) 

module 
(3.2 kWh)  

rack 
(58 kWh)  

section 
(8.7 MWh)  

system 
(32 MWh)  

Source: M. Irwin,”SCE Energy Storage Activities,” Proc. IEEE PES General Meeting, Denver, July 26-30, 2015 
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PCS units 

12 kV/66 kV 
transformer 

BESS 
building 

LARGE – SCALE  ESR 

Source : SCE 
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DEVELOPMENT  OF  ESR 
PERFORMANCE  METRICS 

q  The framework must allow the simulation of the 

various ESR deployments in the power grid and the 

quantification of the physical/information/economic 

interactions between the ESR and all the players that 

interact with the ESR 

q  A key challenge in the construction of this 

conceptual structure is the formulation of new 

metrics 
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A  KEY  CHALLENGE:  CONSTRUCTION  
OF  AN  ANALYTIC  FRAMEWORK 

q  The need is for a conceptual framework to 

appropriately represent the unique ESR features 

and to monetize ESR deployment in a broad range 

of cases – a variety of roles and applications  

q  This framework must be able to comprehensively 

describe all the interactions among ESRs and the 

other players/stakeholders in the grid and markets 
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THE  TESLA  POWERPACK 

Source: https://www.teslamotors.com/powerpack 
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THE  TESLA  POWERPACK 

q  The Tesla Powerpack is 200–kWh battery for utility 

and industrial–scale storage applications 

q  The scalable Powerpack unit is capable to provide 

different combinations of storage system with up 

to 5.4 MWh capability and up to 2.5 MW capacity 
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THE  TESLA  POWERPACK   FALLS  
SHORT  OF  EXPECTATION 

q  The fixed costs of Powerpack unit is 470 $/kWh, 

which is nearly the double of the price that was 

expected earlier (250 $/kWh) 

q  The resulting cost increase, with the costs of the 

inverter and installation taken into account, is in a 

range from 600 to 800 $/kWh  

q  Reductions in costs are expected eventually to be 

similar to those of PV solar capacity price 

declines and such reductions can bring about a 

breakthrough in the wider deployment of ESRs 
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CHALLENGES  TO  LARGE–SCALE  
STORAGE  DEPLOYMENT 

q  The deployment of large–scale ESRs is associated 

with numerous economic, regulatory and technical 

challenges that must be overcome to harness the 

myriad benefits such resources provide 

q  While the implementation of large–scale storage 

projects is certainly beneficial to grid operations, 

the actual quantification of the various benefits 

and impacts and their allocation to the ISO, the 

ESR owners and the customers is far from a 

nontrivial problem 
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OUTLINE  OF  THE  PRESENTATION 

q  The critical importance of energy storage 

q  The storage vision 

q  ESR roles and application in power system 

q  The current status of storage 

q  The California push for storage deployment 

q  The opportunities and the challenges ahead  
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analytic framework P P P P 

appropriate metrics P P P 

new tools P P P P 

battery life estimation P P 

GRAND  CHALLENGES 

challenge 
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battery data analytics P P P P 

limitation of large–scale 
deployment P P P P 

symbiosis of ESR and DRR P P P P 

environmental impacts P P P P 

GRAND  CHALLENGES 

challenge 
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THE  FORMULATION  OF  
APPROPRIATE  METRICS 

q  The replacement of the currently used levelized 

costs of energy (LCOE) metric by a more 

appropriate measure that recognizes the distinct 

phases of battery operation is needed 

q  New measures to indicate the performance of 

ESR on various aspects such as: 
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THE  FORMULATION  OF  
APPROPRIATE  METRICS 

m  ability to act as a generator or load or be in 

the idle phase 

m  environmental impacts 

m  degradation effects for battery storage 

m  opportunity costs 

m  all services provided to the grid 

m  avoidance of investments in costly upgrades 
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FRAMEWORK  REQUIREMENTS 

q  Representation of  

m  the salient characteristics of each ESR and 

its operational phases 

m  the interactions of the embedding 

environment and the grid 

m  the intent of each ESR entity 
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FRAMEWORK  REQUIREMENTS 

m  the different roles and applications of ESR 

m  the incorporation of the business models/

and the operational paradigm of different 

ESR applications 

m  the environmental impact of ESR integration 

m  the incorporation of relevant policy issues 

and appropriate policy alternatives 
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FRAMEWORK  REQUIREMENTS 

m  the implementation of new market products 

to effectively harness ESR features 

m  the ability to incorporate new metrics and 

new tools for ESR analysis and studies 

m  various contractual agreements between 

ESRs and other resources via instruments 

such as  power purchase agreements (PPAs) and 

contracts for differences (CFDs) 
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FRAMEWORK  REQUIREMENTS 

q  Furthermore, the framework must be able to 

represent 

m  the physical grid, the ESR embedding 

environment, if any, all resources/loads 

m  the interchange of control signals, market 

information/forecasts/data, environmental 

and sensor measurements 

m  the physical/financial/information flows between 

physical resources, market players, asset  

owners and resource and grid operators 
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APPLICATIONS  OF  THE  FRAMEWORK 

q  Financial issue studies 

m  analysis of investment alternatives 

m  cost/benefit studies 

m  economic impacts of policy alternatives 

m  estimation of ESR opportunity costs 

m  formulation of ESR offering strategies  

m  justification of ESR investment expenses 
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APPLICATIONS  OF  THE  FRAMEWORK 

q  Policy issue analysis 

m  new policies that impact ESR operations, 

such as regulatory treatment of ESRs, the 

rules for interconnection and market 

participation 

m  impacts of a carbon tax/price  

m  formulation of effective strategic responses 

to modified RPS directives 
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APPLICATIONS  OF  THE  FRAMEWORK 

q  Operational analysis 

m  side–by–side comparison of alternative ESR 

scheduling methodologies 

m  assessment of forecast quality as a function 

of advance time 

m  robust optimization studies to appropriately 

represent uncertainty impacts 
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APPLICATIONS  OF  THE  FRAMEWORK 

q  Planning studies 

m  resource mix design for grids with 

integrated ESRs 

m  environmental assessment of deeper ESR 

penetrations 

m  investment into dedicated ESRs for 

renewable resource projects 
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BATTERY  LIFE  ESTIMATION 

q  Battery capacity fading is a limiting factor in BESS 

q  Better life prediction models, planning and 

operations tools and management schemes are 

required to accelerate commercial deployment of 

batteries in utility–scale applications 

q  Battery cycle life is defined as the number of full 

charge – discharge cycles a battery can perform 

before its nominal capability falls below 80 % of its 

initial rated capability 
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